Exotic Spectroscopy (in Photoproduction) @ EIC

Daniel Winney

with M. Albaladejo, A. H. Blin, C. Fernandez-Ramirez, A. Pilloni, V. Mathieu, A. Szczepaniak

[arXiv:2008.01001]

IR2 @ **EIC**

18 March 2021

Exotic Hadrons

Plethora of quarkonium-like states observed since 2003 which do not fit into conventional qqbar models.

X(3872) - large isospin violation Y(4260) - anomalous coupling to open charm channels Z(3900) - charged, charmonium-like state

2(3300) - charged, charmonium-like state

Ambiguous interpretation of signals:

Multi-quark resonances, hadronic molecules, hadrocharmonia, **kinematic effect**, hybrid

For reviews of XYZs see e.g.: A. Hosaka et al. [arXiv:1603.09229] N. Brambilla et al. [arXiv:1907.07583] F-K. Guo et al. [arXiv:1912.07030]

BESIII [Phys. Rev. Lett. 110, 252001 (2013)]

Case of the Zc(3900)+

Charmonium-like state seen in π J/ ψ and D*D*bar and various production modes.

but always with extra final state particles

Charged nature unambiguously points to exotic nature but precise structure still unknown.

Triangle rescattering with final state pions unlikely to explain away Z-like signal but must still be accounted for in amplitude analysis and parameter extraction.

Guo, Liu, Sakai [arXiv:1912.07030] Szczepaniak [arXiv:1501.01691]

[arXiv:hep-ex/0003020]

Exclusive photoproduction

None of the XYZ's have been observed in photon-induced reactions

Current dedicated photoproduction facilities (e.g. GlueX@JLab) too low in energy reach.

Ideal laboratory for spectroscopy

- Constrained kinematics ⇒ precise determination of production mechanism
- Direct production ⇒ eliminates contribution from triangle rescattering and FSI
- Phenomenology well understood
- Heavy quarkonium photoproduction studies at ep colliders demonstrated at HERA

Higher luminosity and energy at EIC allow study of exotic hadrons!

Exclusive photoproduction

JPAC [arXiv:2008.01001]

See also e.g.
Galata [arXiv:1102.2070]
Lin, Liu, & Xu [arXiv:1308.6345]
Wang et al. [arXiv:2009.05789]

Recipe for an amplitude:

- 1. Identify relevant exchanges
- 2. Photon couplings fixed by observed decay widths and VMD
- 3. Bottom couplings from other reactions

Necessary distinction between production near-threshold and high-energy

- In near threshold production lowest spin exchanges dominate
- At high-energies Regge physics kicks in

Production cross-sections by meson exchanges fall at high energies as a consequence of unitarity (Reggeization).

Lower γp invariant mass ⇒ higher cross-section for X and Z

X(3872)

Effect very dramatic for vector exchanges, X(3872) production (note: interpolation between high and low energy not really straightforward)

Zc(3900)+

Spin-0, pion exchange \Rightarrow cross-sections for Z states fall less dramatically from threshold production.

Spectroscopy of Z's possible with high-luminosity at low CM energies!

Vector charmonia and Y(4260)

Unlike X and Z, vector states produced via diffractive Pomeron exchange.

Diffractive cross-section rise with energy, Y states instead benefit from high CM.

jpacPhoto

Code implementations of all amplitudes mentioned here (and more) freely available for download and use at github.com/dwinney/jpacPhoto

- Probability distribution (Σ_λ | A |^2)
- Differential cross section (dσ / dt)
- Integrated total cross section (σ)
- · Polarization asymmetries (A_LL and K_LL)
- Spin density matrix elements (ρ^α_λ,λ')
- Integrated beam asymmetry (Σ_4pi)
- Beam asymmetry in the y-direction (Σ_y)
- Parity asymmetry (P_σ)

Available amplitudes, so far, include:

- Baryon resonance (s-channel)
- Pomeron exchange (t-channel)
- (fixed-spin and reggeized) Charged pseudo-scalar meson exchange (t-channel)
- (fixed-spin and reggeized) Vector meson exchange (t-channel)
- Primakoff effect off nuclear target (t-channel)
- (fixed-spin) Dirac fermion exchange (u-channel)
- (fixed-spin) Rarita-Schwinger fermion exchange (u-channel)

Can incorporate production and subsequent decays in MC generators, see Derek's talk up next!

Summary

The EIC offers a unique opportunity to study exotics in photoproduction to complement measurements at existing facilities.

In particular production of Zc and Zb states hugely benefits from a high-luminosity, low energy program (e.g. at IR2). Production cross-sections comparable to existing e+e- machines.

Thank you!

Backup Slides

Propagators

At low energies (near threshold) we expect the partial wave sum of the full amplitude to be $\propto (p(s)q(s))^j$ such that only the lowest j contributes. Thus, we consider fixed-spin, Feynman propagators which contain full energy dependence at low energies.

Easily written in terms of Feynman rules:

$$\mathcal{P}^0 = rac{1}{t - m_{\mathcal{E}}^2}, \qquad \qquad \mathcal{P}^1_{\alpha,\beta} = rac{g_{\alpha\beta} - k_{\alpha}k_{\beta}/m_{\mathcal{E}}^2}{t - m_{\mathcal{E}}^2}$$

Equivalently contracting all Lorentz structures evaluated in the *t*-channel CM frame we may match this to a helicity amplitude proportional to

$$\frac{d_{\mu\mu'}^{j}(\theta_t)}{t - m_{\mathcal{E}}^2} = \frac{\text{polynomial of order } j \text{ in } s}{t - m_{\mathcal{E}}^2}$$

15

13

Reggeization

At high energies, the above will like s^j which for $j \geq 1$ exceeds unitarity bounds. Therefore we restrict fixed-spin exchanges heuristically to a few GeV above threshold.

Beyond that, we must consider the re-summed (Reggeized) tower of arbitrary spin with the replacement

$$\mathcal{N}_{\mu\mu'}^{j} \left(\frac{4p(t)\,q(t)}{s_0}\right)^{j-M} \frac{d_{\mu\mu'}^{j}(\theta_t)}{\xi_{\mu\mu'}^{(t)}(s,t)} \frac{1}{t-m_{\mathcal{E}}^2} \rightarrow -\alpha' \,\Gamma(j-\alpha(t)) \left[\frac{1+\tau e^{-i\pi\,\alpha(t)}}{2}\right] \,\left(\frac{s}{s_0}\right)^{\alpha(t)-M}$$

We use usual real, linear parameterizations for the $\rho-\omega$ and π Regge trajectories:

$$\alpha_{\rho}(t) = 1 + 0.9 (t - m_{\rho}^2)$$
 $\alpha_{\pi}(t) = 0.7 (t - m_{\pi}^2)$.

Note an intercept $\alpha_0 = \alpha(t = 0) < 1$ forces the Reggeized amplitude to decrease at high energies.

16

14